Interior gradient regularity for BV minimizers of singular variational problems

نویسندگان

  • Lisa Beck
  • Thomas Schmidt
چکیده

We consider a class of vectorial integrals with linear growth, where, as a key feature, some degenerate/singular behavior is allowed. For generalized minimizers of these integrals in BV, we establish interior gradient regularity and — as a consequence — uniqueness up to constants. In particular, these results apply, for 1 < p < 2, to the singular model integrals ∫ Ω (1 + |∇w(x)|) 1 p dx . MSC (2010): 49N60 (primary); 35J75, 26B30 (secondary)

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Partial Regularity for Degenerate Variational Problems and Image Restoration Models in Bv

We establish partial and local C1,α-regularity results for vectorial almost-minimizers of convex variational integrals in BV. In particular, we investigate cases with a degenerate or singular behavior of p-Laplace type, and we cover (local) minimizers of the exemplary integrals ∫

متن کامل

Partial Regularity for Almost Minimizers of Quasi-Convex Integrals

We consider almost minimizers of variational integrals whose integrands are quasiconvex. Under suitable growth conditions on the integrand and on the function determining the almost minimality, we establish almost everywhere regularity for almost minimizers and obtain results on the regularity of the gradient away from the singular set. We give examples of problems from the calculus of variatio...

متن کامل

Existence and almost everywhere regularity of generalized minimizers for a class of variational problems with linear growth related to image inpainting

We continue the analysis of some modifications of the total variation image inpainting method formulated on the space BV (Ω) in the sense that we generalize the main results of [32] to the case that a more general data fitting term is involved. As in [32] we deal with vector-valued images, we do not impose any structure condition on our density F and the dimension of the domain Ω is arbitrary. ...

متن کامل

Variational integrals with a wide range of anisotropy

We consider anisotropic variational integrals of (p, q)-growth and prove for the scalar case interior C-regularity of bounded local minimizers under the assumption that q ≤ 2p by the way discussing a famous counterexample of Giaquinta. In the vector case we obtain some higher integrability result for the gradient.

متن کامل

Lipschitz regularity for constrained local minimizers of convex variational integrals with a wide range of anisotropy

We establish interior gradient bounds for functions u ∈ W 1 1,loc (Ω) which locally minimize the variational integral J[u, Ω] = ∫ Ω h (|∇u|) dx under the side condition u ≥ Ψ a.e. on Ω with obstacle Ψ being locally Lipschitz. Here h denotes a rather general N-function allowing (p, q)-ellipticity with arbitrary exponents 1 < p ≤ q < ∞. Our arguments are based on ideas developed in [BFM] combined...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015